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Abstract. Nature-based solutions to insurance are in high demand. We explore the
idea that natural capital has value insofar as a sufficiently high stock can buffer the
effects of uncertain renewal. We outline a formal model that susbstantiates such claim.
We propose a definition for the insurance value of natural capital for a stochastic and
dynamic ecosystem that provides ecosystem services and is subject to human impacts.
The insurance value of natural capital depends on the properties of ecosystem dynamics
as well as on risk- and time preferences of ecosystem users. It can be positive or negative.
We relate the natural insurance value to prudent use of ecosystems and precautionary
investments in the natural capital stock. For the case of logarithmic utility we find that
optimal management becomes more conservative with increasing uncertainty if and only
if the insurance value of the natural capital stock is positive. We qualify this finding for
more general forms of the intertemporal utility function.
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1 Introduction

The idea of a natural insurance value plays an important role in science and policy-

making. It has been conceptualized as the reduction of the risk premium that a risk-

averse ecosystem manager can obtain by conservative ecosystem management (Baum-

gärtner 2007, Quaas and Baumgärtner 2008). With the exemption of Augeraud-Véron

et al. (2017), who study the natural insurance value of biodiversity in a dynamic model,

the literature on natural insurance values has so far focused on a static analysis, ig-

noring that the use of ecosystems takes place in a dynamic setting. Especially when

considering the value of natural capital, such a dynamic perspective is necessary, con-

sidering present and future investments and dis-investments into the natural assets. Of

course, these investments are influenced by uncertainty of ecosystem dynamics. A more

or less conservative management of ecosystems with increasing uncertainty is linked to

the prudence (Kimball 1990) of the value function associated to the benefits derived

from using the dynamic ecosystem (Kapaun and Quaas 2013). However, it has not yet

been linked to the insurance value of natural capital.

In this paper we study the interaction between natural insurance value and prudent

use of ecosystems in a dynamic setting. We set up a generic dynamic ecological-economic

model with a risk-averse ecosystem manager who derives benefits from an uncertain flow

of ecosystem services. Conservative ecosystem use resembles the dynamic self-protection

problem recently studied in several contributions (Courbage and Rey 2012, Eeckhoudt

et al. 2012, Wang and Li 2015): Investing in natural ecosystem capital can be seen as a

‘precautionary effort’ that reduces the probability of a loss event occurring, i.e. provides

‘self protection’ in the sense of Ehrlich and Becker (1972). This approach extends

the model set-up by Baumgärtner and Strunz (2014) to a dynamic setting. We show

that the propensity to use the natural insurance function of the ecosystem by means of

conservative ecosystem use is not a generic outcome, but depends on the decision-maker’s

risk and time preferences as well as on ecosystem dynamics and processes. For the case

of logarithmic utility we find that optimal management becomes more conservative with

increasing uncertainty if and only if the insurance value of the natural capital stock is

positive. We qualify this finding for more general forms of the intertemporal utility

function.

In the next section we propose a generic model of stochastic natural capital dynamics

within a harvested ecosystem and propose our definition of the natural insurance value,

based on Lucas (2003). In Section 3, we show how the insurance value of natural capital

is related to precautionary ecosystem management. The final section concludes.
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2 Concept of Insurance Value of Natural Capital

To develop out concept of insurance value of natural capital, we proceed in two steps.

First, we outline a setting to attach value to a stock of natural capital, when managed

under stochasticity. Second, we define the risk premium and the insurance value of

natural capital by comparison with the deterministic case.

2.1 Value of natural capital

We consider the stochastic dynamics of a natural capital (resource) stock in discrete

time t = 0, 1, 2 . . .. Using st to denote the stock at the beginning of the period [t, t+ 1[,

with harvest ht and ‘escapement’ xt = st − ht, the stock at the beginning of the next

period is given by

st+1 = Zt+1 F (st − ht) (1)

with F ′ > 0, F ′′ < 0, and Zt is an independently and identically distributed, multi-

plicative shock, with positive support and mean equal to one. The model of resource

dynamics (1) follows the standard approach in considering a stochastic resource in dis-

crete time (e.g. Reed 1979, Clark 1990, McGough et al. 2009).

The corresponding deterministic natural capital dynamics are given by (1) assuming

that Zt ≡ E[Zt] = 1 for all t.

Utilizing the natural capital stock generates a net economic surplus π(ht, st) during

period [t, t + 1[, measured in monetary terms, where πht > 0 and πst > 0 (subscripts

denoting partial derivatives). We think of this surplus as generating income for some

ecosystem manager. Due to stochastic resource dynamics future income is uncertain.

The ecosystem manager has preferences over the uncertain steam of future income

described by a dynamic expected utility function which he seeks to maximize by choosing

harvest rates,

Ṽ (s0) = max
{ht}

E

[
∞∑
t=0

δt u (π(ht, st))

]
subject to (1), (2)

where u(·) is per-period utility derived from the economic surplus, and δ ∈ (0, 1) is

the utility discount factor. In this setting, the concavity of the instantaneous utility

function u(·) captures both the ecosystem manager’s preference for intertemporal income

smoothing and the degree of risk aversion. We consider a generalization that disentangles

these two effects below.
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While utility depends on the entire prospect of future income streams, the maximum

expected present value of utility, Ṽ (s0), is a function (only) of the initial stock of natural

capital, s0. Given the structure of the optimization problem (2), Ṽ (s0) is an increasing

function of s0: A larger initial natural capital stock gives rise to a higher level of expected

present value of utility.

As resource dynamics are autonomous, discounting is geometric, and the time horizon

is infinite, the value Ṽ of the stochastic optimization problem (2) is solution of the

following (implicit) stochastic dynamic programming equation

Ṽ (s) = max
h

{
u (π (h, s)) + δ E

[
Ṽ (ZF (s− h))

]}
. (3)

We suppose that the value function Ṽ in (2) is the unique solution of the above dynamic

programming equation (3).

In the recursive stochastic dynamic programming formulation, we can also consider

a more general type of preferences that disentangles preferences for intertemporal con-

sumption smoothing and risk aversion. To this end, we write the Bellman equation for

the infinite-time-horizon stochastic problem as

Ṽφ(s) = max
h

{
u (π (h, s)) + δ φ−1

(
E
[
φ
(
Ṽφ(ZF (s− h))

)])}
, (4)

where the increasing function φ captures the difference between preferences for intertem-

poral income smoothing and risk aversion in the Arrow-Pratt sense: For example, if φ(·)
is concave (convex), risk aversion exceeds (falls short of) the preference for intertemporal

consumption smoothing. For the special case where both u(·) and φ(·) are isoelastic,

the preferences in (4) are of the Epstein and Zin (1989, 1991) form. Augeraud-Véron

et al. (2017) consider this type of preferences when studying the insurance value of bio-

diversity. We suppose that the above dynamic programming equation (4) has a unique

solution Ṽφ.

2.2 Risk premium

As a point of reference, we consider the problem to choose the utility-maximizing harvest

rates for the deterministic resource that is described by (1) with Zt = 1 for all t. The
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corresponding deterministic optimization problem can be written as follows

V (st) = max
ht
{u (π (ht, st)) + δ V (F (st − ht))} , or (5a)

V (s0) = max
{ht}

∞∑
t=0

δt u (π(ht, st)) subject to (1) with Zt = 1 (5b)

Now consider the following setting: In the deterministic case, the resource manager has

to sacrifice a constant fraction R of surplus from resource harvesting each period (as in

Lukomska et al. 2014). His optimization problem becomes

W (s0;R) = max
{ht}

∞∑
t=0

δt u ((1−R) π (ht, st)) subject to (1) with Zt = 1 (6)

We define the ad-valorem risk premium R as follows:

Definition 1: The ad-valorem risk premium is the constant fraction R of net economic

surplus from harvesting the deterministic resource such that the resulting present value

is the same as the expected present value from harvesting the stochastic resource,

W (s0;R)
!

= Ṽφ(s0). (7)

This definition follows the standard of measuring the welfare effect of uncertainty

(Lucas 2003), and is very similar to the approach taken by Augeraud-Véron et al. (2017).

It is clear from the definition that the ad-valorem risk premium will depend on the initial

stock of natural capital. In the following we thus consider the ad-valorem risk premium

as a function of the initial stock of natural capital, R(s0), or for short we write R(s).

The ad-valorem risk premium R increases with risk as follows. Let Z be a random

variable which is more variable than Z in the increasing and concave order sense. Sup-

pose that the value function Ṽφ in (4) is increasing and concave. Then, it can easily be

deduced from (4) that, with obvious notations, Ṽ φ ≤ Ṽφ. As W (s0;R) decreases with R

by (6), we conclude that, with obvious notations, R ≥ R.

2.3 Insurance value of natural capital

We are interested in the question whether a larger stock of natural capital will decrease or

increase the risk premium. Following the literature on natural insurance values, natural

capital has a natural insurance function if and only if an increase of the stock decreases

the risk premium (Baumgärtner 2007, Quaas and Baumgärtner 2008, Baumgärtner and
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Strunz 2014).

Based on the definition of the ad-valorem risk premium, we thus define the insurance

value of natural capital as follows.

Definition 2: The insurance value of the natural capital stock s0 is defined as

I(s0) = −dR(s0)

ds0

. (8)

We thus define the insurance value not in terms of monetary value, but in terms of

the percentage of future income value that the decision maker is willing to sacrifice in

order to get rid of uncertainty.

As an analogue, consider the Nato states that have agreed to spend two percent of

GDP on military purposes (not all Nato members comply with this agreement). If the

world would get safer such that this two percent target could be reduced, the amount of

reduction of this fraction of GDP would be the corresponding insurance value according

to Definition 2.

3 Insurance value of natural capital: Implications

for resource management

We now turn to the question how the insurance value of natural capital is linked to

optimizing resource management. First, we provide an expression of the insurance

value. Second, we derive implications for resource management.

3.1 Insurance value of natural capital for isoelastic utility

In this section, we focus on the standard assumption of an isoelastic utility function

u(π) =

{
π1−η−1

1−η for η > 0, η 6= 1

ln(π) for η = 1
(9)

Let us introduce a new function

Φ (x) = φ

(
x1−η − 1

(1− δ) (1− η)

)
, (10)

which is increasing and concave, as φ is increasing and concave.

For the specification (9) of the per-period utility function, the Bellman equation (4)
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has a solution given by (see Appendix A)

Ṽφ = φ−1 ◦ Φ ◦ ŨΦ (11a)

ŨΦ(s) = max
h

(
(1− δ) π(h, s)1−η + δ

(
Φ−1

(
E
[
Φ
(
ŨΦ (ZF (s− h))

)]))1−η
) 1

1−η

.

(11b)

By taking Z = 1, we immediately obtain that the Bellman equation (5) of the

corresponding deterministic problem has a solution given by

V = φ−1 ◦ Φ ◦ U (12a)

U(s) = max
h

(
(1− δ) π(h, s)1−η + δ (U (F (s− h)))1−η) 1

1−η . (12b)

Following Definition (7), the ad-valorem risk premium is defined implicitely by the

relations

W (R, s) = max
h

(
(1− δ) ((1−R) π(h, s))1−η + δ (W (R,F (s− h)))1−η) 1

1−η (13a)

W (R, s)
!

= ŨΦ(s). (13b)

With this set-up, and especially the iso-elastic utility function, we obtain the following

results on the ad-valorem risk premium and optimal management.

Proposition 1: For the isoelastic utility function (9), we have

1. W (R, s) = (1−R)U(s).

2. h?(s) does not depend on R.

3. The ad-valorem risk premium is

R(s) = 1− ŨΦ(s)

U(s)
. (14)

Proof. see Appendix B.

3.2 Implications of insurance value for resource management

From Proposition 1, we can now deduce implications for optimal resource management.
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For the utility function (9) we can differentiate ŨΦ(s) = (1−R(s))U(s) with respect

to s and obtain

Ũ ′Φ(s) = I(s)U(s) + (1−R(s))U ′(s) (15)

dividing by ŨΦ(s), and using ŨΦ(s) = (1 − R(s))U(s), which follows from (13b) and

Proposition 1.1, we get

Ũ ′Φ(s)

ŨΦ(s)
=

I(s)

1−R(s)
+
U ′(s)

U(s)
(16)

As U(s) > 0, equation (15) implies that

I(s) T 0 ⇔ Ũ ′Φ(s) T (1−R(s))U ′(s). (17)

That means, the insurance value of natural capital is positive if and only if the shadow

price of the natural capital stock in the stochastic setting is larger than 1−R(s) times

the shadow price of the natural capital stock in the corresponding deterministic setting.

For the next step, we consider the economic surplus as a function of stock st and

escapement xt = st − ht by

Π(xt, st) ≡ π(st − xt, st). (18)

Using x̃?(s) to denote the optimal escapement, assuming an interior solution, the

Bellman equation (11b) can be written as

ŨΦ(s)1−η = (1− δ) Π(x̃?(s), s)1−η + δ
(

Φ−1
(
E
[
Φ
(
ŨΦ (ZF (x̃?(s)))

)]))1−η
. (3′′′)

Differentiating with respect to s, using the envelope theorem, we get

ŨΦ(s)−η Ũ ′Φ(s) = (1− δ) Π (x̃?(s), s)−η Πs (x̃?(s), s) , (19)

as the value in the future depends only on x.

Similarly, using x?(s) to denote the optimal escapement for the deterministic prob-

lem, we obtain

U(s)−η U ′(s) = (1− δ) Π (x?(s), s)−η Πs (x?(s), s) . (20)
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Management under uncertainty is more conservative than in the deterministic case if

(and only if) x̃?(s) > x?(s). This means, that at a given initial stock level s the manager

would leave a larger escapement level when facing uncertainty about biological produc-

tivity of the stock than in a setting where the future stock size is deterministic. More

conservative management under uncertainty can also be interpreted as precautionary

saving into the natural capital stock, and is optimal if the value function of the dynamic

optimization problem exhibits prudence (Kapaun and Quaas 2013).

We can relate these results to the insurance value of natural capital by using (17) in

the following formulation

I(s) T 0 ⇔

Π (x̃∗(s), s)−η Πs (x̃∗(s), s) T (1−R(s))1−η Π (x∗(s), s)−η Πs (x∗(s), s) (21)

This result allows to relate the insurance value of natural capital – I(s) – to the escape-

ment in the stochastic vs. the deterministic settings.

For the case of logarithmic utility, we obtain the following result

Proposition 2: For the case of logarithmic utility, (9) with η = 1, the insurance value

of natural capital is positive if and only if management is more conservative in the

stochastic than in the deterministic setting, i.e.

η = 1 : I(s) T 0 ⇔ x̃?(s) T x?(s). (22)

Proof. See Appendix C.

In case of logarithmic utility, a positive insurance value is a necessary and sufficient

condition for precautionary savings in the natural capital stock. Note that logarithmic

utility is a particularly relevant case, as this is the type of utility considered in most

macroeconomic models, also in the domains of natural resource use (Levhari and Mirman

1980) and climate change (Golosov et al. 2014, Gerlagh and Liski 2018).

In the case of an isoelastic utility, with an elasticity different from one, the relation-

ship between precautionary resource use and the insurance value of natural capital is a

little more involved. As 0 < 1−R(s) < 1, we obtain the following results.

Proposition 3: Assume isoelastic utility (9).

1. For η < 1, (a) a positive insurance value is a necessary, but not sufficient, condition

for precautionary investment in the natural capital stock, and (b) a negative insur-

ance value is a sufficient, but not necessary, condition for precautionary investment
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in the natural capital stock,

η < 1 :
I(s) > 0 ⇐ x̃?(s) > x?(s)

I(s) < 0 ⇒ x̃?(s) < x?(s)
(23a)

2. For η > 1, (a) a positive insurance value is a sufficient, but not necessary, condition

for precautionary investment in the natural capital stock, and (b) a negative insur-

ance value is a necessary, but not sufficient, condition for precautionary investment

in the natural capital stock,

η < 1 :
I(s) > 0 ⇒ x̃?(s) > x?(s)

I(s) < 0 ⇐ x̃?(s) < x?(s)
(23b)

Proof. See Appendix C.

The case η < 1 means that incomes at different points in time are relatively close

substitutes, while η > 1 means that incomes at different points in time are relatively

close complements. In both cases, it matters for the decision-maker that the value-added

risk premium reduces future incomes in the deterministic setting, but in a different

way. For intertemporal substitutes, η < 1, the decision maker tends to compensate

future loss of income by increasing present incomes. This effect increases harvest in the

deterministic setting, relative to the stochastic setting. Thus, a positive insurance value

is not sufficient for precautionary investment in the natural capital stock.

For intertemporal complements, η > 1, the decision maker tends to compensate fu-

ture loss of income by investing in the natural capital stock and reducing present incomes.

This effect decreases harvest in the deterministic setting, relative to the stochastic set-

ting. Thus, even for a negative insurance value the decision maker may still choose

precautionary investment in the natural capital stock.

4 Conclusions

In this paper we have proposed a definition for the insurance value of natural capital

for a stochastic and dynamic ecosystem that provides ecosystem services and is subject

to human impacts. We have shown that the insurance value of natural capital can

be positive or negative, depending on the properties of ecosystem dynamics as well as

on risk- and time preferences of ecosystem users. The sign and level of the insurance

value are related to prudent use of ecosystems and precautionary investments in the
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natural capital stock. For the case of logarithmic utility we have shown that optimal

management becomes more conservative with increasing uncertainty if and only if the

insurance value of the natural capital stock is positive. For more general forms of the

intertemporal utility function, this finding is qualified, and a positive insurance value can

be either a positive or a sufficient condition for precautionary ecosystem management,

but generally not both.

The concept and model proposed in this paper may form the basis for next steps

of quantifying and analyzing the insurance value of natural capital and management

implications. Using numerical methods of stochastic programming or stochastic dynamic

programming (e.g., value function iteration), it is a straightforward task to quantify the

insurance value for natural capital such as fish stocks (McGough et al. 2009, Kapaun

and Quaas 2013, Tahvonen et al. 2017), rangelands (Perrings and Walker 1997, Janssen

et al. 2004, Quaas et al. 2007, Quaas and Baumgärtner 2012), or water (Walker et al.

2010). As previous studies most often find that uncertainty induces more conservative

management of ecosystems, we expect that most of these natural capital stocks have a

positive natural insurance value.

Appendix

A Bellman equation (11b) for isoelastic utility

In the following, we assume η 6= 1 in the isoelastic utility (9). Then, we show at the end that

the result (11b) that we obtain is well-defined also for η = 1. With the specification (9), the

Bellman equation (4) becomes

Ṽφ(s) = max
h

{
π(h, s)1−η − 1

1− η
+ δ φ−1

(
E
[
φ
(
Ṽφ (ZF (s− h))

)])}
, (24)

Multiplying by (1− δ) (1− η) gives

(1− δ) (1− η) Ṽφ(s) = max
h

{
(1− δ)π(h, s)1−η − (1− δ)

+ δ (1− δ) (1− η)φ−1
(
E
[
φ
(
Ṽφ (ZF (s− h))

)])}
. (25)
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Further rearranging, we obtain that

(
(1− δ) (1− η) Ṽφ(s) + 1

) 1
1−η

(26)

= max
h

(
(1− δ)π(h, s)1−η + δ + δ (1− δ) (1− η)φ−1

(
E
[
φ
(
Ṽφ (ZF (s− h))

)])) 1
1−η

(27)

= max
h

(
(1− δ)π(h, s)1−η + δ

(
Φ−1

(
E
[
φ
(
Ṽφ (ZF (s− h))

)]))1−η
) 1

1−η

, (28)

since the functions φ and Φ in (10) are related by

Φ (x) = φ

(
x1−η − 1

(1− δ) (1− η)

)
and

(
Φ−1(y)

)1−η
= (1− δ) (1− η)φ−1(y) + 1. (29)

Therefore, if we define a new function ŨΦ as in (11a) by ŨΦ(s) = Φ−1(φ(Ṽφ(s))), we easily

obtain that ŨΦ(s) =
(

(1− δ) (1− η) Ṽφ(s) + 1
) 1

1−η
, and that Φ(ŨΦ(s)) = φ(Ṽφ(s)). Overall,

the new function ŨΦ is solution of

ŨΦ(s) = max
h

(
(1− δ)π(h, s)1−η + δ

(
Φ−1

(
E
[
Φ
(
ŨΦ (ZF (s− h))

)]))1−η
) 1

1−η

. (30)

B Proof of Proposition 1

1. Rearranging (13b), we get

(
W (R, s)

1−R

)1−η
= max

h

(
(1− δ)π(h, s)1−η + δ

(
W (R,F (s− h))

1−R

)1−η
)
. (31)

Comparing with (12b), we obtain that W (R, s) = (1 − R(s))U(s) by uniqueness of

the solutions of the Bellman equation (12b) (because uniqueness holds for the Bellman

equation (4)).

2. Using W (R, s) = (1−R(s))U(s) in (31), R(s) cancels out of the Bellman equation and

thus h does not depend on R.

3. From the definition (13b) of the risk premium R, namely ŨΦ(s) = W (R, s) and from

W (R, s) = (1−R(s))U(s), we deduce that ŨΦ(s) = (1−R(s))U(s). Rearranging leads

to (14).
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C Proof of Propositions 2–3

We have

d

dx

(
Π(x, s)−η Πs(x, s)

)
= −ηΠ(x, s)−η−1︸ ︷︷ ︸

<0

Πx(x, s)︸ ︷︷ ︸
≤0

Πs(x, s)︸ ︷︷ ︸
≥0

+ Π(x, s)−η︸ ︷︷ ︸
>0

Πsx(x, s)︸ ︷︷ ︸
≥0

≥ 0 (32)

Thus, for a given level of s, and for η = 1, the left-hand side of (21) is larger (equal to,

smaller) than the right-hand side whenever the argument of the function Π(x, s)−η Πs(x, s)

is larger (equal to, smaller) on the left-hand side than on the right-hand side. This proves

Proposition 2.

A similar argument proves Proposition 3, noting that (1 − R)1−η < 1 for η < 1 and

(1−R)1−η > 1 for η > 1, as 0 < 1−R < 1.
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Quaas, M. F., Baumgärtner, S., Becker, C., Frank, K., Müller, B., 2007. Uncertainty and
sustainability in the management of rangelands. Ecological Economics 62, 213–234.

Reed, W. J., 1979. Optimal escapement levels in stochastic and deterministic harvesting mod-
els. Journal of Environmental Economics and Management 6, 350–363.

Tahvonen, O., Quaas, M. F., Voss, R., 2017. Harvesting selectivity and stochastic recruitment
in economic models of age-structured fisheries. Journal of Environmental Economics and
ManagementDoi 10.1016/j.jeem.2017.08.011.

Walker, B., Pearson, L., Harris, M., Maler, K.-G., Li, C.-Z., Biggs, R., Baynes, T., 2010.
Incorporating resilience in the assessment of inclusive wealth: An example from south east
australia. Environmental and Resource Economics 45 (2), 183–202.

Wang, J., Li, J., 2015. Precautionary effort: Another trait for prudence. Journal of Risk and
Insurance 82 (4), 977–983.

14


	Introduction
	Concept of Insurance Value of Natural Capital
	Value of natural capital
	Risk premium
	Insurance value of natural capital

	Insurance value of natural capital: Implications for resource management
	Insurance value of natural capital for isoelastic utility
	Implications of insurance value for resource management

	Conclusions
	Bellman equation (11b) for isoelastic utility
	Proof of Proposition 1
	Proof of Propositions 2–3


